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Learning Objectives

\

e The properties of fusion reactions and the
production of fusion energy.

e The design and operation of magnetic
confinement reactors.

e The design and operation of inertial
confinement reactors.

e The importance of the Lawson criterion.

The design of a fusion power reactor.

e Progress toward a viable fusion reactor.

©2015 Cengage Learning Engineering. All Right Reserve d.



Advantages over nuclear fission

e

« Fusion processes are inherently more stable and
can be readily stopped

« Utilizes inexpensive and plentiful fuel (maybe)

 Produces no hazardous waste products
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Energy from nuclear fusion

Nuclear binding energy can be convertec ne
\

by fusing together two light nuclei as sho y th ding

energy per nucleon curve.
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Figure 6.1: Average binding energy per nucleon as a function of the number of
nucleons.
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Proton-proton (p-p) fusion

e

The simplest fusion process is the binding together of two
protons (or 1H nuclei):

p+p—o>d+et + (7.1)

Because the positron and a neutrino are involved in this
process it is dominated by the week interaction and
proceeds very slowly.
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Deuteron-deuteron (d-d) fusion

o

Two deuterons (2H nuclei) can be fused without the
need for the weak interaction by the processes

d+d—>°He+n (Q=23.3MeV) (7.4)
and

d+d—>H+p (Q=40MeV) (7.5)
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Deuteron-triton (d-t) fusion

o

A deuteron (2H nucleus) and a triton (3H nucleus) can also be
fused by the process

d+t—>%He +n  (Q=17.6MeV) (7.6)
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Cross sections for d-d and d-t fusion

to acheve thnd-d ion
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Figure 7.1: Fusion cross sections as a function of energy for d-d and d-t reactions.
(b =barns; 1 b= 10"* m?)
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Coulomb barrier

In order to fuse two nuclei together it |
to overcome the Coulombic repulsion of the
positively charged protons.

It is necessary that the nuclei are at high enough
energy and are kept close enough together for long
enough that fusion will occur.

The Lawson criterion for density and confinement
time must be satisfied

nt > 10%° S*m > (7.9)
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Approaches to fusion

—

Two approaches can be used to achieve fusion

« Magnetic confinement

« Inertial confinement
(sometimes called laser fusion)
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Magnetic confinement

e

At high temperature all gas atoms are ionized creating a plasma.

The charged particles of the plasma can be controlled by
electromagnetic fields.

The Tokamak, which uses a toroidal field geometry
is the cost common.
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Confinement of plasma in

a toroidal field geometry
\

Toroidal Toroidal
field current
Poloidal Poloidal
current field

Based on R.A. Dunlap, An Introduction to the Physics of Nuclei and

Particles, Brooks-Cole, Belmont (2004).

(a) (b)

Figure 7.2: Geometry of currents and magnetic field lines in a toroidal reactor:
(a) toroidal field produced by poloidal currents; (b) poloidal field produced by a
toroidal current.
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Basic Tokamak design

\

Magnet coils Armature

Primary
windings

Vacuum Plasma
chamber

Based on R.A. Dunlap, An Introduction to the Physics of Nuclei and Particles,

Brooks-Cole, Belmont (2004).

Figure 7.3: Schematic diagram of a tokamak.
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Interior of a "spherical” Tokamak
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Figure 7.4: Interior of the Joint European Torus (JET), a tokamak located in Culham,
Oxfordshire, England.
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Inertial confinement fusion

Based on R.A. Dunlap, An Introduction to the Physics of Nuclei and Particles, Brooks-Cole, Belmont (2004),

e Euame B (a) irradiation of fuel pellet
with Laser
o § ‘% (b)Heating of outer portion
@ ®) of pellet
(c) Ablation of outer portion
of pellet
i (d) Compression of core
by inertial forces

(c) (d)

Figure 7.6: Steps in the heating and compression of a fuel pellet in an inertial
confinement fusion reactor. The various stages of fusion are described in the text.
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Lawrence Livermore Laser fusion experiment
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Figure 7.7: Photograph of the laser fusion (inertial confinement fusion) system at
Lawrence Livermore National Laboratory (California). Note workers in lower part of
photograph for scale.
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Laser fusion experimental conditions

e

d-t fuel pellet - typically 1 mg

Laser power - 750 TW
(50 times total average world
power consumption)

Laser pulse duration - 2.4 ns
Energy per laser pulse -

(750 TW)x(2 4 ns) = 1.8 MJ
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density - confinement time relationships for

different fusion experiments

—
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Based on R.A. Dunlap, An Introduction to the Physics of

Nuclei and Particles, Brooks-Cole, Belmont (2004).

Figure 7.8: Relationship of the quantities in the Lawson parameter for different
types of fusion reactors that are necessary to meet the Lawson criterion.
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Progress towards fusion energy

(Magnetic Confinement Reactors)
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Based on R.A. Dunlap, An Introduction to the Physics of Nuclei and Particles, Brooks-Cole, Belmont (2004).
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Figure 7.9: Progress toward ignition for magnetic confinement fusion reactors.
The broken blue line is the breakeven point if additional energetic particles are
injected into the plasma and the red line is breakeven without particle injection.
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Progress towards fusion energy

(Inertial Confinement Reactors)
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Figure 7.10: Progress toward ignition for inertial confinement fusion reactors.
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Where does fuel come from?

—

d-d fusion is much more difficult than d-t fusion so current
experiments focus on d-t fusion.

Deuterium from sea water - one hydrogen out of 6410 is
deuterium - more or less unlimited

Tritium is unstable (half life = 12 years) and must be made
artificially by the reaction

°Li + n — *H + *He (Q = 4.78 MeV) (7.10)

Limited by the world's supply of lithium
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Basic design of a fusion reactor
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Figure 7.11: Proposed inertial confinement fusion reactor for the production of
electricity.
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Challenges to fusion energy

Need to achieve nm
~l

 Need to account for Carnot efficiency of electricity
generation

 Need to make energy economically competitive
 Need to consider fuel availability
(if tritium is used, lithium supply might last
500 - 1000 years)

 Need to consider competition for lithium supplies
(for rechargeable batteries)
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Nuclear binding energy can be relea g
together of light nuclei

« Safer and more environmentally conscious than fission
« d-t fusion most likely to be feasible
« Two basic approaches -

o Magnetic confinement and

o Inertial confinement (Laser fusion)

 Needs to be energetically and economically viable

« d-t fusion requires lithium to breed fuel
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